High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
نویسندگان
چکیده
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.
منابع مشابه
Integration of a Vanadium Redox Flow Battery with a Proton Exchange Membrane Fuel Cell as an Energy Storage System
The proton exchange membrane (PEM) fuel cell is a green energy producer which converts chemical energy to electricity in high yield. Alternatively, the vanadium redox flow battery (VRB) is one of the best rechargeable batteries because of its capability to average loads and output power sources. These two systems are modeled by Nernst equation and electrochemical rules. An effective energy gene...
متن کاملA Numerical Simulation of Vanadium Redox Flow Batteries
The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...
متن کاملReversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow bat...
متن کاملHigh-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries
Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte so...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کامل